publications

2024

  1. Online Learning and Information Exponents: The Importance of Batch size & Time/Complexity Tradeoffs
    Luca ArnaboldiYatin DandiFlorent KrzakalaBruno Loureiro, Luca Pesce and Ludovic Stephan
    In Proceedings of the 41st International Conference on Machine Learning, Jul 2024
  2. A non-backtracking method for long matrix and tensor completion
    Ludovic Stephan and Yizhe Zhu
    In Proceedings of Thirty Seventh Conference on Learning Theory, Jun 2024
  3. Repetita iuvant: Data repetition allows sgd to learn high-dimensional multi-index functions
    Luca ArnaboldiYatin DandiFlorent Krzakala, Luca Pesce and Ludovic Stephan
    arXiv preprint, May 2024
  4. Gaussian universality of perceptrons with random labels
    Federica Gerace, Florent KrzakalaBruno LoureiroLudovic Stephan and Lenka Zdeborová
    Physical Review E, Mar 2024
  5. Sparse random hypergraphs: non-backtracking spectra and community detection
    Ludovic Stephan and Yizhe Zhu
    Information and Inference: A Journal of the IMA, Feb 2024
    Also in FOCS’22

2023

  1. Universality laws for Gaussian mixtures in generalized linear models
    Yatin DandiLudovic StephanFlorent KrzakalaBruno Loureiro and Lenka Zdeborová
    In Advances in Neural Information Processing Systems, Dec 2023
  2. Are Gaussian Data All You Need? The Extents and Limits of Universality in High-Dimensional Generalized Linear Estimation
    Luca Pesce, Florent KrzakalaBruno Loureiro and Ludovic Stephan
    In Proceedings of the 40th International Conference on Machine Learning, Jul 2023
  3. From high-dimensional & mean-field dynamics to dimensionless odes: A unifying approach to sgd in two-layers networks
    Luca ArnaboldiLudovic StephanFlorent Krzakala and Bruno Loureiro
    In The Thirty Sixth Annual Conference on Learning Theory, Jul 2023
  4. Escaping mediocrity: how two-layer networks learn hard single-index models with SGD
    Luca ArnaboldiFlorent KrzakalaBruno Loureiro and Ludovic Stephan
    arXiv preprint, May 2023
  5. Learning Two-Layer Neural Networks, One (Giant) Step at a Time
    Yatin DandiFlorent KrzakalaBruno Loureiro, Luca Pesce and Ludovic Stephan
    arXiv preprint, May 2023

2022

  1. Non-backtracking spectra of weighted inhomogeneous random graphs
    Ludovic Stephan and Laurent Massoulié
    Mathematical Statistics and Learning, Dec 2022
  2. Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
    Rodrigo VeigaLudovic StephanBruno LoureiroFlorent Krzakala and Lenka Zdeborová
    In Advances in Neural Information Processing Systems, Dec 2022

2021

  1. A simpler spectral approach for clustering in directed networks
    Simon Coste and Ludovic Stephan
    arXiv preprint, Feb 2021

2019

  1. Planting trees in graphs, and finding them back
    Laurent MassouliéLudovic Stephan and Don Towsley
    In Conference on Learning Theory, Jun 2019
  2. Robustness of Spectral Methods for Community Detection
    Ludovic Stephan and Laurent Massoulié
    In Conference on Learning Theory, Jun 2019